- 6.8 GB/s PCIe Gen3 (8-lane) interface - 2 channels sampled at 12-bit resolution - 1 GS/s real-time sampling rate - FPGA based FFT processing - Variable frequency external clocking - Continuous streaming mode - ±400 mV fixed input range - AlazarDSO[®] oscilloscope software - Software Development Kit supports C/C++, C#, Python, MATLAB[®], LabVIEW[®] - Support for Windows[®] & Linux[®] | Product | Bus | Operating
System | Channels | Sampling
Rate | Bandwidth | Memory Per
Channel | Resolution | |---------|------------------|--|----------|-------------------------|-----------|-----------------------------|------------| | ATS9371 | PCIe x8
Gen 3 | 32-bit/64-bit
Windows &
64-bit Linux | 2 | 1 GS/s on
2 channels | 1.0 GHz | 2 Gigasamples on 2 channels | 12 bits | #### **Overview** AlazarTech ATS*9371 is an 8-lane PCI Express Gen 3 (PCIe x8), dual-channel, high speed, 12 bit, 1 GS/s waveform digitizer card capable of acquiring data into its on-board 8 GB memory or streaming acquired data to PC memory at rates up to 6.8 GB/s. It is also possible to do FPGA-based 4096 point FFT on acquired data. This is useful for Optical Coherence Tomography (OCT) related applications. There are two A/D converters on the ATS9371 board, each running at 1 GS/s. Unlike other products on the market, ATS9371 does not use interleaved sampling. Each input has its own 12-bit, 1 GSPS ADC chip. Optional variable frequency external clock allows operation from 1 GHz down to 300 MHz (or 100 MHz for screened ATS9371 cards), making ATS9371 an ideal waveform digitizer for many applications. Users can capture data from one trigger or a burst of triggers. Users can also stream very large datasets continuously to PC memory or hard disk. ATS9371 is supplied with AlazarDSO software that lets the user start data acquisition immediately, without having to go through a software development process. Users who need to integrate the ATS9371 in their own program can purchase a software development kit, ATS-SDK, for C/C++, C#, Python, MATLAB, and LabVIEW for both Windows and Linux operating systems. All of this advanced functionality is packaged in a low power, half-length PCI Express Gen 3 card. #### **Applications** Optical Coherence Tomography (OCT) Ultrasonic & Eddy Current NDT/NDE RF Signal Recording & Analysis Terabyte Storage Oscilloscope High Resolution Oscilloscope Spectroscopy **Multi-Channel Transient Recording** #### **PCI Express Gen 3 Bus Interface** ATS9371 interfaces to the host computer using an 8-lane PCI Express bus. Each lane operates at 8.0 Gbps (Gen 3). According to PCIe specification, an 8-lane board can be plugged into any 8-lane or 16-lane slot, but not into a 4-lane or 1-lane slot. As such, ATS9371 requires at least one free 8-lane or 16-lane slot on the motherboard. ATS9371 is fully compatible with motherboards of all generations of PCI Express (Gen 1, Gen 2 or Gen 3). At run-time, ATS9371 and the motherboard negotiate the appropriate link speed and width. The physical and logical PCIe Gen3 x8 interface is provided by an on-board FPGA, which also integrates acquisition control functions, memory management functions, acquisition datapath and DSP logic. This very high degree of integration maximizes product reliability. The AlazarTech® 6.8 GB/s benchmark was done on an Asus X99 Deluxe motherboard. Users must always be wary of throughput specifications from manufacturers of waveform digitizers. Some unscrupulous manufacturers tend to specify the raw, burst-mode throughput of the bus. AlazarTech, on the other hand, specifies the benchmarked sustained throughput. To achieve such high throughput, a great deal of proprietary memory management logic and kernel mode drivers have been designed. #### **Analog Input** An ATS9371 features two analog input channels. Each channel has up to 1.0 GHz of full power analog input bandwidth. Input voltage range is fixed at ± 400 mV. It must be noted that input impedance of both channels is fixed at 50 Ω . Input coupling is fixed to DC. #### **Acquisition System** ATS9371 PCI Express digitizers use state of the art dual 1 GS/s, 12-bit ADCs to digitize the input signals. The two channels are guaranteed to be simultaneous, as the two ADCs use a common clock. Note that it is not possible to perform dual edge sampling (DES) on ATS9371. An acquisition can consist of multiple records, with each record being captured as a result of one trigger event. A record can contain both pre-trigger and post-trigger data. Up to 8064 pre-trigger points can be captured in single channel mode and 3968 in dual-channel mode. ATS9371 can capture an infinite number of triggers. In between the multiple triggers being captured, the acquisition system is re-armed by the hardware within 256 sampling clock cycles. This mode of capture, sometimes referred to as Multiple Record, is very useful for capturing data in applications with a very rapid or unpredictable trigger rate. Examples of such applications include medical imaging, ultrasonic testing, OCT and NMR spectroscopy. #### **On-Board Acquisition Memory** ATS9371 features two DDR3 SODIMM sockets that can each be populated with a 4 GB SODIMM, for a total on-board memory of 8 GB (4 Gigasamples). This on-board memory is used as a very deep FIFO to temporarily store acquired ADC data before transferring it to motherboard memory using proprietary DMA engines. This on-board buffer allows loss-less data transfer even if the computer is temporarily interrupted by other tasks. #### **Maximum Sustained Transfer Rate** PCI Express support on different motherboards may vary, resulting in non-optimal data transfer rates. The reasons behind these differences are complex and varied and will not be discussed here. ATS9371 users can quickly determine the maximum sustained transfer rate for their motherboard by inserting their card in a PCIe slot and running the bus benchmarking tool provided in AlazarDSO for Windows or AlazarFrontpanel for Linux software. #### **Recommended Motherboards or PCs** Many different types of motherboards and PCs have been benchmarked by AlazarTech. The ones that have produced the best throughput results (up to 6.8 GB/s) are listed here: www.alazartech.com/images-media/2246-AlazarTechRecommendedMotherboards.pdf. AlazarTech recommends that customers not use SandyBridge CPUs with ATS9371. #### **FPGA Based Digital Signal Processing** In addition to providing the bus interface and managing the acquisition engine, ATS9371's on-board FPGA is also used for digital signal processing, such as Fast Fourier Transforms. ATS9371 features a large Stratix V FPGA 5SGXMA3K3F40C3N. ATS9371 FPGA #### **FPGA Based FFT Processing** It is possible to do real time FFT signal processing using the on-board FPGA. Note that only one input can be processed. Up to 4096 point FFT length is supported. A user programmable complex windowing function can be applied to the acquired data before FFT calculation. The complex FFT output is converted to magnitude in single precision floating point format. A logarithmic output is also available. It is also possible to DMA both frequency and time domain data. This allows users to verify FPGA-based FFT operation during algorithm development. ATS9371 can perform 250,000 4096 point FFTs per second. FPGA-based FFT is ideal for customers in the Optical Coherence Tomography (OCT) field. #### No Pre-Trigger (NPT) AutoDMA Many ultrasonic scanning and medical imaging applications do not need any pre-trigger data: only post-trigger data is sufficient. NPT AutoDMA is designed specifically for these applications. By only storing post-trigger data, the memory bandwidth is optimized and the entire onboard memory acts like a very deep FIFO. Note that a DMA is not started until (RecordsPerBuffer +1) number of records (triggers) have been acquired and written to the on-board memory. NPT AutoDMA buffers do not include headers. However, users can specify that each record should come with its own footer that contains a 40-bit trigger timestamp. The footer is called NPT Footer. More importantly, a BUFFER_OVERFLOW flag is asserted only if the entire on-board memory is used up. This provides a very substantial improvement over Traditional AutoDMA. NPT AutoDMA can easily acquire data to PC host memory at the maximum sustained transfer rate of the motherboard without causing an overflow. This is the recommended mode of operation for most ultrasonic scanning, OCT and medical imaging applications. It should be noted that even though this mode is called "No Pre Trigger", it is now possible to do limited pre-trigger data captures, i.e. up to 8192 points in single channel mode and 4096 points in dual channel mode. #### **Continuous AutoDMA** Continuous AutoDMA is also known as the data streaming mode. In this mode, data starts streaming across the PCI bus as soon as the ATS9371 is armed for acquisition. It is important to note that triggering is disabled in this mode. Continuous AutoDMA buffers do not include headers, so it is not possible to get trigger time-stamps. A BUFFER_OVERFLOW flag is asserted only if the entire on-board memory is used up. The amount of data to be captured is controlled by counting the number of buffers acquired. Acquisition is stopped by an AbortCapture command. Continuous AutoDMA can easily acquire data to PC host memory at the maximum sustained transfer rate of the motherboard without causing an overflow. This is the recommended mode for very long signal recording. #### Triggered Streaming AutoDMA Triggered Streaming AutoDMA is virtually the same as Continuous mode, except the data transfer across the bus is held off until a trigger event has been detected. Triggered Streaming AutoDMA buffers do not include headers, so it is not possible to get trigger time-stamps. A BUFFER_OVERFLOW flag is asserted only if the entire on-board memory is used up. As in Continuous mode, the amount of data to be captured is controlled by counting the number of buffers acquired. Acquisition is stopped by an AbortCapture command. Triggered Streaming AutoDMA can easily acquire data to PC host memory at the maximum sustained transfer rate of the motherboard without causing an overflow. This is the recommended mode for RF signal recording that has to be started at a specific time, e.g. based on a GPS pulse. #### **Asynchronous DMA Driver** The various AutoDMA schemes discussed above provide hardware support for optimal data transfer. However, a corresponding high performance software mechanism is also required to make sure sustained data transfer can be achieved. This proprietary software mechanism is called Async DMA (short for Asynchronous DMA). A number of data buffers are posted by the application software. Once a data buffer is filled, i.e. a DMA has been completed, ATS9371 hardware generates an interrupt, causing an event message to be sent to the application so it can start consuming data. Once the data has been consumed, the application can post the data buffer back on the queue. This can go on indefinitely. One of the great advantages of Async DMA is that almost 95% of CPU cycles are available for data processing, as all DMA arming is done on an event-driven basis. To the best of our knowledge, no other supplier of waveform digitizers provides asynchronous software drivers. Their synchronous drivers force the CPU to manage data acquisition, thereby slowing down the overall data acquisition process. #### **Data Packing Mode** By default, ATS9371 stores 12-bit data acquired by its on-board A/D converters as a 16-bit integer. Users can also choose to pack the data as 12-bit integers or even 8-bit integers. Being able to reduce the total amount of data being transferred can be very useful in data recording applications. Note that it is the user application's responsibility to unpack the data. Also note that NPT Footers are not available in Data Packing Mode. #### **Triggering** ATS9371 is equipped with sophisticated digital triggering options, such as programmable trigger thresholds and slope on any of the input channels or the External Trigger input. While most oscilloscopes offer only one trigger engine, ATS9371 offers two trigger engines (called Engines J and K). The user can specify the number of records to capture in an acquisition, the length of each record and the amount of pre-trigger data. A programmable trigger delay can also be set by the user. This is very useful for capturing the signal of interest in a pulse-echo application, such as ultrasound, radar, lidar etc. #### **External Trigger Input** ATS9371 external trigger input (TRIG IN) can be set as an analog input with ± 2.5 V full scale input range and 50 Ω input impedance, or a 3.3 V TTL (5 V-compliant) input. When TTL input is selected, the input impedance increases to approximately 6.6 k Ω , making it easier to drive the TRIG IN input from high output impedance sources. #### **Timebase** ATS9371 timebase can be controlled either by on-board low-jitter VCO or by optional External Clock. On-board low-jitter VCO uses a 10 MHz TCXO as a reference clock. Clock buffers used feature less than 76 fs $_{\!_{RMS}}$ additive jitter. #### **Optional External Clock** While the ATS9371 features low jitter VCO and a 10 MHz TCXO as the source of the timebase system, there may be occasions when digitizing has to be synchronized to an external clock source. ATS9371 External Clock option provides an SMA input for an external clock signal, which can be a sine wave or square wave signal of minimum 200 mV_{p-p} amplitude. External clock amplitude must not exceed 1.7 V_{p-p}. Input impedance for the External Clock input is fixed at 50 Ω . External clock input is always ac-coupled. There are two types of External Clock supported by ATS9371. These are described below. #### **Fast External Clock** A new sample is taken by the on-board ADCs for each rising edge of this External Clock signal. In order to satisfy the clocking requirements of the ADC chips being used, Fast External Clock frequency must always be higher than 300 MHz and lower than 2 GHz. For customers whose external clocks may go lower than 300 MHz during the acquisition, it is possible to have AlazarTech screen the ATS9371 boards for external clock operation down to 100 MHz (Order number ATS9371-006) This is the ideal clocking scheme for OCT applications. #### **10 MHz Reference Clock** It is possible to generate the sampling clock based on an external 10 MHz reference input. This is useful for RF systems that use a common 10 MHz reference clock. ATS9371 uses an on-board low-jitter PLL to generate a user-specified high frequency clock used by the ADC. This sampling clock can be any multiple of 1 MHz between 300 MHz and 2 GHz. #### **OCT Ignore Bad Clock** The ADCs used on the ATS9371 require the external clock frequency to be above 300 MHz and lower than 2 GHz. In OCT applications, these limits cannot always be respected due to the nature of the optical source. AlazarTech's OCT Ignore Bad Clock technology, allows safe operation with these out-of-specification clocks without requiring the use of a dummy clock in the source. Firmware version 26.04+, driver version 6.00.01+ and SDK 7.1.3+ are required to take advantage of OCT Ignore Bad Clock. For existing customers, these firmware and driver versions are available for download from AlazarTech's website free of charge. See <u>www.alazartech.com/Technology/OCT-Ignore-Bad-Clock</u> for more information on this technology. #### **AUX Connector** ATS9371 provides an AUX (Auxiliary) SMA connector that is configured as a Trigger Output connector by default. When configured as a Trigger Output, AUX SMA connector outputs a 5 Volt TTL signal synchronous to the ATS9371 Trigger signal, allowing users to synchronize their test systems to the ATS9371 Trigger. When combined with the Trigger Delay feature of the ATS9371, this option is ideal for ultrasonic and other pulse-echo imaging applications. AUX connector can also be used as a Trigger Enable Input for Frame Capture (B-scan) applications. In fact, this is the most popular use of AUX connector in OCT applications. #### **Calibration** Every ATS9371 digitizer is factory calibrated to NIST- or CNRC-traceable standards. To recalibrate an ATS9371, the digitizer must either be shipped back to the factory or a qualified metrology lab. #### **On-Board Monitoring** Adding to the reliability offered by ATS9371 are the on-board diagnostic circuits that constantly monitor over 20 different voltages, currents and temperatures. LED alarms are activated if any of the values surpasses the limits. #### **AlazarDSO Software** ATS9371 is supplied with the powerful AlazarDSO software that allows the user to setup the acquisition hardware and capture, display and archive the signals. The Stream-To-Memory command in AlazarDSO allows users to stream a large dataset to motherboard memory. AlazarDSO software also includes powerful tools for benchmarking the computer bus and disk drive. #### **Software Development Kits** AlazarTech provides easy to use software development kits for customers who want to integrate the ATS9371 into their own software. A Windows and Linux compatible software development kit, called ATS-SDK, includes headers, libraries and source code sample programs written in C/C++, C#, Python, MATLAB, and LabVIEW. These programs can fully control the ATS9371 and acquire data in user buffers. The purchase of an ATS-SDK license includes a subscription that provides the following benefits for a period of 12 months from the date of purchase: - Download ATS-SDK updates from the AlazarTech website; - Receive technical support on ATS-SDK. Customers who want to receive technical support and download new releases beyond this 12 month period should purchase extended support and maintenance (order number ATS-SDK-1YR). #### **ATS-GPU** ATS-GPU is a software library developed by AlazarTech to allow users to do real-time data transfer from ATS9371 to a GPU card at rates up to 4 GB/s. Modern GPUs include very powerful processing units and a very high speed graphical memory bus. This combination makes them perfectly suited for signal processing applications. ATS-GPU-BASE is supplied with an example user application in source code. The application includes GPU kernels that use ATS-GPU to receive data, do very simple signal processing (data inversion), and copy the processed (inverted) data back to a user buffer. All this is done at the highest possible data transfer rate. Programmers can replace the data inversion code with application-specific signal processing kernels to develop custom applications. ATS-GPU-OCT is the optional OCT Signal Processing library for ATS-GPU. It contains floating point FFT routines that have also been optimized to provide the maximum number of FFTs per second. Kernel code running on the GPU can do zero-padding, apply a windowing function, do a floating point FFT, calculate the amplitude and convert the result to a log scale. It is also possible to output phase information. FFTs can be done on triggered data or on continuous gapless stream of data. It is also possible to do spectral averaging. Our benchmarks showed that it was possible to do 1,000,000 FFTs per second when capturing data in single-channel mode and using a NVIDIA GeForce GTX Titan X GPU. ATS-GPU supports 64-bit Windows and 64-bit Linux for CUDA®-based development. #### **ATS-GMA** ATS-GMA is a software library developed by AlazarTech that allows users to DMA data from ATS9371 to an AMD Radeon $^{\text{TM}}$ Pro GPU card at full bus speed, with a latency as low as 100 μ s. ATS-GMA does not use any host memory buffers for temporary storage. ATS-GMA-BASE is supplied with an example user application in source code. The application includes GPU kernels that use ATS-GMA to receive data, do very simple signal processing (data inversion), and, if required, copy the processed (inverted) data to a user buffer. All this is done at the highest possible data transfer rate. Programmers can replace the data inversion code with application-specific signal processing kernels to develop custom applications. ATS-GMA-OCT is the optional OCT Signal Processing library for ATS-GMA. It contains floating point FFT routines that have also been optimized to provide the maximum number of FFTs per second. Kernel code running on the GPU can do zero-padding, apply a windowing function, do a floating point FFT, calculate the amplitude and convert the result to a log scale. It is also possible to output phase information. ATS-GMA supports 64-bit Windows 7 and 64-bit Windows 10 for OpenCL™-based development. #### **Support for Windows** Windows support for ATS9371 includes Windows 7, Windows 8.x, Windows 10, Windows Server 2008 R2, Windows Server 2010 and Windows Server 2013. Due due to lack of demand and due to the fact that Microsoft no longer supports these operating systems, AlazarTech no longer supports Windows XP, Windows Vista, and Windows Server 2008. #### **Linux Support** AlazarTech offers ATS9371 binary drivers for most of the popular Linux distributions, such as CentOS, Ubuntu,... Users can download the binary driver for their specific distribution by choosing from the available drivers here: #### ftp://release@ftp.alazartech.com/outgoing/linux Also provided is a GUI application called AlazarFrontPanel that allows simple data acquisition and display. ATS-SDK includes source code example programs for Linux, which demonstrate how to acquire data programmatically using a C compiler. If customers want to use ATS9371 in any Linux distribution other than the one listed above, they can have the AlazarTech engineering team generate an appropriate driver for a nominal fee, if applicable. Linux driver source code (order number ATS9371-LINUX) can be made available to qualified OEM customers, based on minimum annual sales. For release of driver source code, a Non-Disclosure Agreement must be executed between the customer's organization and AlazarTech. All such source code disclosures are made on an as-is basis with limited support from the factory. #### **Export Control Classification** According to the Export Controls Division of Government of Canada, ATS9371 is currently not controlled for export from Canada. Its export control classification is N8, which is equivalent to ECCN EAR99. ATS9371 can be shipped freely outside of Canada, with the exception of countries listed on the Area Control List and Sanctions List. Furthermore, if the end-use of ATS9371, in part or in its entirety, is related to the development or deployment of weapons of mass destruction, AlazarTech is obliged to apply for an export permit. #### **RoHS Compliance** ATS9371 is fully RoHS compliant, as defined by Directive 2015/863/EU (RoHS 3) of the European Parliament and of the Council of 31 March 2015 on the restriction of the use of certain hazardous substances in electrical and electronic equipment. All manufacturing is done using RoHS-compliant components and lead-free soldering. #### **EC Conformity** ATS9371 conforms to the following standards: #### **Electromagnetic Emissions:** CISPR 22:2006/EN 55022:2006 (Class A): Information Technology Equipment (ITE). Radio disturbance characteristics. Limits and method of measurement. #### Electromagnetic Immunity: CISPR 24:1997/EN 55024:1998 (+A1 +A2): Information Technology Equipment Immunity characteristics — Limits and methods of measurement. #### Safety IEC 60950-1:2005: Information technology equipment — Safety — Part 1: General requirements. IEC 60950-1:2006: Information technology equipment — Safety — Part 1: General requirements. ATS9371 also follows the provisions of the following directives: 2006/95/EC (Low Voltage Equipment); 2004/108/EC (Electromagnetic Compatibility). #### FCC & ICES-003 Compliance ATS9371 has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15, subpart B of the FCC Rules, and the Canadian Interference-Causing Equipment Standard ICES-003:2004. #### **System Requirements** Personal computer with at least one free x8 or x16 PCI Express slot (must be Gen 3 slot to achieve full data throughput), 16 GB RAM, 100 MB of free hard disk space, SVGA display adaptor and monitor with at least a 1024 x 768 resolution. #### **Power Requirements** +12 V 1.5 A, typical +3.3 V 3.0 A, typical #### **Physical** Size Single slot, half length PCI Express card (4.377 inches x 6.5 inches excluding the connectors protruding from the front panel) Weight 250 g #### I/O Connectors ECLK, CH A, CH B, TRIG IN, AUX I/O SMA female connector #### **Environmental** Operating temperature 0 to 55 degrees Celsius Storage temperature -20 to 70 degrees Celsius Relative humidity 5 to 95%, non-condensing #### **Acquisition System** Resolution 12 bits Bandwidth (-3 dB) DC-coupled, $50~\Omega$ Standard DC - 1.0 GHz Number of channels 2, simultaneously sampled Maximum Sample Rate 1 GS/s single shot Minimum Sample Rate 1 KS/s single shot for internal clocking Full Scale Input ranges 50 Ω input impedance: ±400 mV DC accuracy $\pm 2\%$ of full scale in all ranges Input coupling DC Input impedance 50 Ω ±1% Input protection 50 Ω ±4 V (DC + peak AC for CH A, CH B and TRIG IN only without external attenuation) #### **Acquisition Memory System** Memory Size 8 GB (4 Gigasamples in one channel mode) Record Length Software-selectable with 128-point resolution. Record length must be a minimum of 256 points. There is no upper limit on the maximum record length. Number of Records Software selectable from a minimum of 1 to a maximum of infinite number of records Pre-trigger depth From 0 to 8176 for single channel From 0 to 4088 for dual channel Post-trigger depth Record Length – Pre-Trigger Depth #### **Timebase System** Timebase options Internal Clock or External Clock (Optional) Internal Clock accuracy ±2 ppm Internal Sample Rates 1 GS/s, 800 MS/s, 500 MS/s, 200 MS/s, 100 MS/s, 50 MS/s, 20 MS/s, 10 MS/s, 5 MS/s, 2 MS/s, 1 MS/s, 500 KS/s, 200 KS/s, 100 KS/s, 50 KS/s, 20 KS/s, 10 KS/s, 5 KS/s, 2 KS/s, 1 KS/s #### **Dynamic Parameters** Typical values measured on the 400 mV range of CH A of a randomly selected ATS9371. Input signal was provided by a SRS SG384 signal generator, followed by a 9-pole, 100 MHz band-pass filter (TTE Q36T-100M-10M-50-720BMF). Input frequency was set at 99.9 MHz and output amplitude was set to approximately 95% of the full scale input. SNR 57.1 dB SINAD 56.6 dB Note that these dynamic parameters may vary from one unit to another, with input frequency and with the full scale input range selected. #### **Optional ECLK (External Clock) Input** Signal Level ±200 mVp-p Input impedance 50Ω Input coupling AC Maximum frequency for Fast External Clock 1 GHz Minimum frequency for Fast External Clock 300 MHz 100 MHz for Screened ECLK boards Sampling Edge Rising only Maximum amplitude $2 V_{p-p}$ #### **Optional 10 MHz Reference PLL Input** Signal Level ±200 mV Sine wave or square wave $\begin{array}{ll} \text{Input impedance} & \quad 50 \; \Omega \\ \\ \text{Input Coupling} & \quad \text{AC coupled} \end{array}$ Input Frequency 10 MHz \pm 0.1 MHz Maximum frequency 10.1 MHz Minimum frequency 9.9 MHz Sampling Clock Freq. Any multiple of 1 MHz between: 300 MHz and 1 GHz #### **Triggering System** Mode Edge triggering with hysteresis Comparator Type Digital comparators for internal (CH A, CH B) triggering and analog comparators for TRIG IN (External) triggering Number of Trigger Engines 2 Trigger Engine Combination Engine J, engine K, J OR K, software selectable Trigger Engine Source CH A, CH B, EXT, Software or None, independently software selectable for each of the two Trigger Engines Hysteresis $\pm 5\%$ of full scale input, typical Trigger sensitivity $\pm 10\%$ of full scale input range. This implies that the trigger system may not trigger reliably if the input has an amplitude less than $\pm 10\%$ of full scale input range selected ±5%, typical, of full scale input range of the selected trigger source Bandwidth 250 MHz Trigger level accuracy Trigger Delay Software selectable from 0 to 9,999,999 sampling clock cycles Trigger Timeout Software selectable with a 10 µs resolution. Maximum settable value is 3,600 seconds. Can also be disabled to wait indefinitely for a trigger event #### TRIG IN (External Trigger) Input Input type Analog or 3.3 V TTL (5 V compliant), software selectable $\begin{array}{lll} \text{Input coupling} & \text{DC only} \\ \text{Analog input impedance} & 50 \ \Omega \\ \text{Analog bandwidth (-3 dB)} & \text{DC - 250 MHz} \\ \text{Analog input range} & \pm 2.5 \ \text{V} \end{array}$ Analog DC accuracy $\pm 10\%$ of full scale input Analog input protection ± 8 V (DC + peak AC without external attenuation) TTL input impedance $6.6 \text{ k}\Omega \pm 10\%$ TTL min. pulse width 32 ADC sampling clocks TTL min. pulse amplitude 2 Volts TTL input protection -0.7 V to + 5.5 V #### **Auxiliary I/O (AUX I/O)** Signal direction Input or Output, software selectable. Trigger Output by default Output types: Trigger Output Busy Output Software controlled Digital Output Input types: Trigger Enable Software readable Digital Input Output Amplitude: 5 Volt TTL Synchronization: Synchronized to a clock derived from the ADC sampling clock. Divide-by-4 clock (dual channel mode) or divide-by-8 clock (single channel mode) Input Amplitude: 3.3 Volt TTL (5 Volt-compliant) #### **Materials Supplied** ATS9371 PCI Express Card ATS9371 Install Disk on USB flash drive #### **Certification and Compliances** RoHS 3 (Directive 2015/863/EU) Compliance ${\sf CE\ Marking-EC\ Conformity}$ FCC Part 15 Class A / ICES-003 Class A Compliance #### **ORDERING INFORMATION** ATS9371 ATS9371-001 ATS9371: External Clock Upgrade ATS9371-005 ATS9371: Screened External Clock Upgrade ATS9371-006 ATS9371: One Year Extended Warranty ATS9371-061 Software Development Kit ATS-SDK 1 Year Subscription (Supports C/C++, Python, MATLAB, and LabVIEW) ATS-GPU-BASE: GPU Streaming Library ATSGPU-001 1 Year Subscription ATS-GPU-OCT: Signal Processing Library ATSGPU-101 1 Year Subscription (requires ATSGPU-001) ATS-GMA-BASE: GPU Streaming Library ATSGMA-001 1 Year Subscription ATS-GMA-OCT: Signal Processing Library 1 Year Subscription (requires ATSGMA-001) ATSGMA-101 All specifications are subject to change without notice † AlazarDSO, AlazarTech, and AlazarTech ATS are registered trademarks of Alazar Technologies Inc. MATLAB is a trademark and/or registered trademark of The MathWorks, Inc. LabVIEW is a trademark and/or registered trademark of National Instruments. Windows is a trademark and/or registered trademark of Microsoft Corporation in the U.S. and/or other countries. Linux is a registered trademark of Linus Torvalds. CUDA is a trademark and/or registered trademark of NVIDIA Corporation in the U.S. and/or other countries. Radeon is a trademark of Advanced Micro Devices, Inc. OpenCL is a trademark of Apple Inc. All other trademarks are the property of their respective owners. ### Manufactured By: #### Alazar Technologies, Inc. 6600 TRANS-CANADA HIGHWAY, SUITE 310 POINTE-CLAIRE, QC, CANADA H9R 4S2 TOLL FREE: 1-877-7-ALAZAR OR 1-877-725-2927 TEL: (514) 426-4899 FAX: (514) 426-2723 E-MAIL: sales@alazartech.com ### **DATASHEET REVISION HISTORY** | Changes from version 1.5A (Jan 2018) to version 1.5B Section, Page | | | | | | | | | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|--|--|--|--|--|--| | Updated RoHS Compliance to RoHS 3 Global co | | | | | | | | | | Updated product image | pq. 1 | | | | | | | | | Clarified Operating System Support | Feature Table,pg. 1 | | | | | | | | | Updated Recommended Motherboards or PCs | Recommended Motherboards or PCs, pg. 2 | | | | | | | | | Correction of trigger engines: changed to J and K (instead of X and Y) | Triggering, pg. 4 | | | | | | | | | Specified that External Trigger Input 3.3 V TTL input is 5 V-compliant, and added note about LSB being replaced by the state of the external trigger sign | External Trigger Input, pg. 4 nal source | | | | | | | | | Added information on ATS-SDK license | Software Development Kits, pg. 5 | | | | | | | | | Specified 64-bit version for Windows and Linux support | ATS-GPU, pg. 6 | | | | | | | | | Added ATS-GMA section | ATS-GMA, pg. 6 | | | | | | | | | Added list of supported Microsoft Windows versions | Support for Windows, pg. 6 | | | | | | | | | Added Acquisition Memory System section | Acquisition Memory System, pg. 8 | | | | | | | | | Clarified that Max. and Min. Frequencies are for Fast External Clock, corrected Maximum Frequency, and added Maximum Amplitude: 2 V _{P-P} | Optional ECLK (External Clock) Input, pg. 8 | | | | | | | | | Added "PLL" to section name for clarity
Corrected Input Frequency tolerance and added Max. and Min. Frequencies
Corrected upper limit of Sampling Clock Frequency range to 1 GHz | Optional 10 MHz Reference PLL Input, pg. 8 | | | | | | | | | Corrected Trigger Engine Combination | Triggering System, pg. 8 | | | | | | | | | Clarified specs by providing separate specifications for Analog and TTL input, Added TTL min. pulse width, TTL min. pulse amplitude, and TTL input protect | TRIG IN (External Trigger) Input, pg. 9 tion | | | | | | | | | Replaced TRIG OUT Output section with Auxiliary I/O (AUX I/O), and corrected Input Amplitude: 3.3 V TTL (5 V-compliant) | Auxiliary I/O (AUX I/O), pg. 9 | | | | | | | | | Added subscription length for ATS-SDK, ATSGPU-001, ATSGPU-101
Added products ATSGMA-001, ATSGMA-101 | Ordering Information, pg. 9 | | | | | | | | | Added Trademark information | pg. 9 | | | | | | | | | Changes from version 1.5 (Sept 2017) to version 1.5A | Section, Page | | | | | | | | | Added FFT length | Overview, pg. 1 | | | | | | | | | Added note about NPT Footers | No Pre-Trigger (NPT) AutoDMA, pg. 3 | | | | | | | | | Added note about NPT Footers not being available in Data Packing Mode | Data Packing Mode, pg. 4 | | | | | | | | | Edited section on OCT Ignore Bad Clock | OCT Ignore Bad Clock, pg. 5 | | | | | | | | | Added note about Trigger Enable Input use in OCT | AUX Connector, pg. 5 | | | | | | | | | Added -BASE and -OCT to ATS-GPU description for clarity | ATS-GPU, pg. 5 | | | | | | | | | Corrected size of card | Physical, pg. 7 | | | | | | | | | Updated email address | Manufactured By, pg. 8 | | | | | | | |