**ATS9120**
20 MS/s 12-Bit PCIe Digitizer

- 2 channels sampled at 12-bit resolution
- 20 MS/s simultaneous real-time sampling rate on each input
- Continuous streaming mode
- ±40 mV to ±20 V input range
- Asynchronous DMA device driver
- AlazarDSO Oscilloscope Software
- Software Development Kit supports C/C++, C#, Python, MATLAB®, LabVIEW®
- Support for Windows® & Linux®

<table>
<thead>
<tr>
<th>Product</th>
<th>Bus</th>
<th>Operating System</th>
<th>Channels</th>
<th>Sampling Rate</th>
<th>Bandwidth</th>
<th>Memory Per Channel</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATS9120</td>
<td>PCIe x1</td>
<td>32-bit/64-bit Windows &amp; 64-bit Linux</td>
<td>2</td>
<td>20 MS/s to 1 KS/s</td>
<td>10 MHz</td>
<td>Uses on-FPGA FIFO</td>
<td>12 bits</td>
</tr>
</tbody>
</table>

**Overview**

ATS9120 is a dual-channel, 12 bit, 20 MS/s waveform digitizer card capable of streaming acquired data to motherboard memory. ATS9120 is a single-lane PCI Express (PCIe x1) Gen 1 card, which supports up to 200 MB/s bus throughput.

Users can capture data from one trigger or a burst of triggers. Users can also stream very large datasets continuously to motherboard memory or hard disk.

ATS9120 PCI Express digitizers are an ideal solution for cost sensitive OEM applications that require a digitizer to be embedded into the customer's equipment.

ATS9120 is supplied with AlazarDSO oscilloscope software that lets the user get started immediately without having to write any software.

Users who need to integrate the ATS9120 in their own program can purchase a software development kit, ATS-SDK, for C/C++, C#, Python, MATLAB, and LabVIEW for both Windows and Linux operating system.

All of this advanced functionality is packaged in a low power, half-length PCI Express card.

**Applications**

- Optical Coherence Tomography (OCT)
- Ultrasonic & Eddy Current NDT/NDE
- Motor Winding Testing
- Radar/RF Signal Recording & Analysis
- High Resolution Oscilloscope
- Lidar
- Spectroscopy
- Multi-Channel Transient Recording
PCI Express Bus Interface
ATS9120 interfaces to the host computer using a 1-lane PCI Express bus, operating at 2.5 Gbps.

According to PCIe specification, a 1-lane board can be plugged into any PCIe slot. ATS9120 requires at least one free slot on the motherboard. Electrically, ATS9120 is compatible with Gen 1, Gen 2, and Gen 3 slots.

The physical and logical PCIe x1 interface is provided by an on-board FPGA, which also integrates acquisition control functions, memory management functions and acquisition datapath. This very high degree of integration maximizes product reliability.

AlazarTech’s 200 MB/s benchmark was done using an Asus X299-A motherboard.

The same performance can be expected from virtually all other motherboards.

Analog Input
An ATS9120 features two analog input channels with extensive functionality. Each channel has 10 MHz of full power analog input bandwidth. With software selectable attenuation, you can achieve an input voltage range of ±40 mV to ±20 V.

Software selectable AC or DC coupling further increases the signal measurement capability. Software selectable 50 Ω input impedance makes it easy to interface to high speed RF signals.

Acquisition System
ATS9120 PCI digitizers use a pair of 20 MS/s, 12-bit ADCs to digitize the input signals. The real-time sampling rate ranges from 20 MS/s down to 1 KS/s. The two channels are guaranteed to be simultaneous, as they share the exact same clock.

An acquisition can consist of multiple records, with each record being captured as a result of one trigger event. A record may contain up to 4096 points of pre-trigger data.

In between the multiple records being captured, the acquisition system is re-armed by the hardware within 16 sampling clock cycles. This mode of capture, sometimes referred to as Multiple Record, is very useful for capturing data in applications with a very rapid trigger rate.

Examples of such applications include OCT, ultrasonic testing, NMR spectroscopy, motor testing and lightning test.

On-Board Acquisition Memory
ATS9120 uses an on-board FIFO to temporarily store ADC data before DMAing it to motherboard memory.

Since the maximum data rate generated by ATS9120 is only 80 MB/s and its PCIe interface can DMA at 200 MB/s, it is possible to stream a very long, gapless dataset using the on-board FIFO.

FIFO-only acquisition mode can be used for scanning applications such as OCT, ultrasonic inspection, radar and lidar.

Pre-Trigger Acquisition
It is possible to acquire up to 4096 points of pre-trigger data.

Maximum Sustained Transfer Rate
Virtually all modern motherboards support the specified 200 MB/s throughput.

ATS9120 users can quickly determine the maximum sustained transfer rate for their motherboard by inserting their card in a PCIe slot and running the Tools:Benchmark:Bus tool provided in AlazarDSO software.

No Pre-Trigger (NPT) AutoDMA
Many ultrasonic scanning and medical imaging applications do not need any pre-trigger data: only post-trigger data is sufficient.

NPT AutoDMA is designed specifically for these applications. By only storing post-trigger data, the memory bandwidth is optimized.

Note that a DMA is not started until RecordsPerBuffer number of records (triggers) have been acquired.

NPT AutoDMA buffers do not include headers, so it is not possible to get trigger time-stamps.

More importantly, a BUFFER_OVERFLOW flag is asserted if the FPGA FIFO overflows.

NPT AutoDMA can easily acquire data to PC host memory at the maximum sustained transfer rate of the motherboard without causing an overflow.

This is the recommended mode of operation for most ultrasonic scanning, OCT and medical imaging applications.

It is possible to acquire up to 4096 points of pre-trigger data even in NPT mode.

Continuous AutoDMA
Continuous AutoDMA is also known as the data streaming mode.

In this mode, data starts streaming across the PCI bus as soon as the ATS9120 is armed for acquisition. It is important to note that triggering is disabled in this mode.
A proprietary software mechanism is called Async DMA (short for Asynchronous DMA).

A number of data buffers are posted by the application software. Once a data buffer is filled, i.e., a DMA has been completed, ATS9120 hardware generates an interrupt, causing an event message to be sent to the application so it can start consuming data. Once the data has been consumed, the application can post the data buffer back on the queue. This can go on indefinitely.

One of the great advantages of Async DMA is that almost 95% of CPU cycles are available for data processing, as all DMA arming is done on an event-driven basis.

**Triggering**

The ATS9120 is equipped with sophisticated analog and digital triggering options, such as programmable trigger thresholds and slope on any of the input channels or the External Trigger input.

While most oscilloscopes offer only one trigger engine, ATS9120 offers two trigger engines (called Engines X and Y). This allows the user to combine the two engines using a logical OR operand.

The user can specify the number of records to capture in an acquisition, the length of each record and the amount of pre-trigger data.

A programmable trigger delay can also be set by the user. This is very useful for capturing the signal of interest in a pulse-echo application, such as ultrasonic, radar, lidar etc.

**External Trigger Input**

ATS9120 external trigger input (TRIG IN) can be set as an analog input with ±2.5 V full scale input range and 50 Ω input impedance, or a 3.3 V TTL input.

When TTL input is selected, the input impedance increases to approximately 6 kΩ, making it easier to drive the TRIG IN input from high output impedance sources.

**Trigger Time Stamp**

A 40-bit time stamp counter comes standard with the ATS9120. By default, this counter is initialized to a zero value when an acquisition session is started and increments once for every sample captured, thus providing a 1-clock timing accuracy. At 20 MS/s sample rate, this counter will not roll over for well over 15 hours.

This allows the user to find out the timing of each trigger in a multiple record acquisition relative to the start of the acquisition.

It is also possible to configure the timestamp counter to reset for the first acquisition only and never again, until a software reset is issued. This feature enables
users to obtain precise timing information about multiple acquisitions.

**Optional External Clock**

While the ATS9120 features a 10 MHz TCXO as the source of the timebase system, there may be occasions when digitizing has to be synchronized to an external clock source.

ATS9120 External Clock upgrade (order number ATS9120-005) provides an SMA input for an external clock signal with a frequency between 20 MHz and 1 MHz.

Users can also set a decimation factor for the external clock. For example, if the user wants to digitize the input signal on every tenth clock edge, this factor can be set to 10. Minimum decimation value is 1 and maximum is 100,000.

There are two types of External Clock supported by ATS9120. These are described below.

**Fast External Clock**

A new sample is taken by the on-board ADCs for each rising (or falling) edge of this External Clock signal.

In order to satisfy the clocking requirements of the ADC chips being used, Fast External Clock frequency must always be higher than 1 MHz and lower than 20 MHz.

**10 MHz Reference Clock**

It is possible to generate the sampling clock based on an external 10 MHz reference input. This is useful for RF systems that use a common 10 MHz reference clock.

ATS9120 uses an on-FPGA low-jitter PLL to generate the 20 MHz clock used by the ADC.

**AUX Connector**

ATS9120 provides an AUX (Auxiliary) BNC connector that is configured as a Trigger Output connector by default.

When configured as a Trigger Output, AUX BNC connector outputs a 5 Volt TTL signal synchronous to the ATS9120 Trigger signal, allowing users to synchronize their test systems to the ATS9120 Trigger. Note that the Trigger output is synchronized to a divide-by-8 clock (dual channel mode) or divide-by-16 clock (single channel mode).

When combined with the Trigger Delay feature of the ATS9120, this option is ideal for ultrasonic and other pulse-echo imaging applications.

AUX connector can also be used as a Trigger Enable Input and programmable Clock Output.

**Calibration**

Every ATS9120 digitizer is factory calibrated for gain and offset accuracy to NIST- or CNRC-traceable standards, using an oscilloscope calibrator. To recalibrate an ATS9120, the digitizer must either be shipped back to the factory or a qualified metrology laboratory.

**RoHS Compliance**

ATS9120 units are fully RoHS compliant, as defined by Directive 2011/65/EU (RoHS 2) of the European Parliament and of the Council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

All manufacturing is done using RoHS-compliant components and lead-free soldering.

**AlazarDSO Software**

ATS9120 is supplied with the powerful AlazarDSO software that allows the user to setup the acquisition hardware and capture, display and archive the signals.

The Stream-To-Memory command in AlazarDSO allows users to stream a large dataset to motherboard memory.

AlazarDSO software also includes powerful tools for benchmarking the computer bus and disk drive.

**Software Development Kits**

AlazarTech provides easy to use software development kits for customers who want to integrate the ATS9120 into their own software.

A Windows and Linux compatible software development kit, called ATS-SDK, includes headers, libraries and source code sample programs written in C/C++, C#, Python, MATLAB, and LabVIEW. These programs can fully control the ATS9120 and acquire data in user buffers.

**ATS-GPU**

ATS-GPU is a software library developed by AlazarTech to allow users to do real-time data transfer from ATS9120 to a GPU card at full bus speed.

Modern GPUs include very powerful processing units and a very high speed graphical memory bus. This combination makes them perfectly suited for signal processing applications.

ATS-GPU-BASE is supplied with an example user application in source code. The application includes GPU kernels that use ATS-GPU to receive data, do very simple signal processing (data inversion), and copy the processed (inverted) data back to a user buffer. All this is done at the highest possible data transfer rate.

Programmers can replace the data inversion code with application-specific signal processing kernels to develop custom applications.
ATS-GPU-OCT is the optional OCT Signal Processing library for ATS-GPU. It contains floating point FFT routines that have also been optimized to provide the maximum number of FFTs per second. Kernel code running on the GPU can do zero-padding, apply a windowing function, do a floating point FFT, calculate the amplitude and convert the result to a log scale. It is also possible to output phase information.

ATS-GPU supports Windows and Linux for CUDA®-based development.

**ATS-GMA**

ATS-GMA is a software library developed by AlazarTech that allows users to DMA data from ATS9120 to an AMD Radeon™ Pro GPU card at full bus speed, with a latency as low as 100 µs. ATS-GMA does not use any host memory buffers for temporary storage.

ATS-GMA-BASE is supplied with an example user application in source code. The application includes GPU kernels that use ATS-GMA to receive data, do very simple signal processing (data inversion), and, if required, copy the processed (inverted) data to a user buffer. All this is done at the highest possible data transfer rate.

Programmers can replace the data inversion code with application-specific signal processing kernels to develop custom applications.

ATS-GMA-OCT is the optional OCT Signal Processing library for ATS-GMA. It contains floating point FFT routines that have also been optimized to provide the maximum number of FFTs per second. Kernel code running on the GPU can do zero-padding, apply a windowing function, do a floating point FFT, calculate the amplitude and convert the result to a log scale. It is also possible to output phase information.

ATS-GMA supports 64-bit Windows 7 and Windows 10 for OpenCL™-based development.

**Linux Support**

AlazarTech offers ATS9120 binary drivers for most of the popular Linux distributions, such as CentOS, Ubuntu,...

Users can download the binary driver for their specific distribution by choosing from the available drivers here:

ftp://release@ftp.alazartech.com/outgoing/linux

Also provided is a GUI application called AlazarFront-Panel that allows simple data acquisition and display.

ATS-SDK includes source code example programs for Linux, which demonstrate how to acquire data programmatically using a C compiler.

If customers want to use ATS9120 in any Linux distribution other than the one listed above, they can have the AlazarTech engineering team generate an appropriate driver for a nominal fee, if applicable.

Based on a minimum annual business commitment, the Linux driver source code license (order number ATS9120-LINUX) may be granted to qualified OEM customers for a fee. For release of driver source code, a Non-Disclosure Agreement must be executed between the customer’s organization and AlazarTech.

All such source code disclosures are made on an as-is basis with limited support from the factory.

**Export Control Classification**

According to the Export Controls Division of Government of Canada, ATS9120 is currently not controlled for export from Canada. Its export control classification is N8, which is equivalent to ECCN EAR99. ATS9120 can be shipped freely outside of Canada, with the exception of countries listed on the Area Control List and Sanctions List. Furthermore, if the end-use of ATS9120, in part or in its entirety, is related to the development or deployment of weapons of mass destruction, AlazarTech is obliged to apply for an export permit.

**EC Conformity**

ATS9120 conforms to the following standards:


- **FCC & ICES-003 Compliance**

ATS9120 has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15, subpart B of the FCC Rules, and the Canadian Interference-Causing Equipment Standard ICES-003:2004.
**ATS9120**

**20 MS/s 12-Bit PCIe Digitizer**

## System Requirements

Personal computer with at least one free PCIe slot, 16 GB RAM, 100 MB of free hard disk space, SVGA display adaptor and monitor with at least a 1024 x 768 resolution.

## Power Requirements

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>+12 V</td>
<td>1 A, typical</td>
</tr>
<tr>
<td>+3.3 V</td>
<td>0.25 A, typical</td>
</tr>
</tbody>
</table>

## Physical

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>Single slot, half length PCI Express card (4.377 inches x 6.5 inches excluding the connectors protruding from the front panel)</td>
</tr>
<tr>
<td>Weight</td>
<td>142 g</td>
</tr>
</tbody>
</table>

## I/O Connectors

<table>
<thead>
<tr>
<th>Connector</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH A, CH B, TRIG IN, AUX I/O</td>
<td>BNC female connectors</td>
</tr>
<tr>
<td>ECLK</td>
<td>SMA female connector</td>
</tr>
</tbody>
</table>

## Environmental

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>0 to 55 degrees Celsius</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-20 to 70 degrees Celsius</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>5 to 95%, non-condensing</td>
</tr>
</tbody>
</table>

## Acquisition System

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>12 bits Data is returned as MSB-justified 16 bit unsigned integers</td>
</tr>
<tr>
<td>Bandwidth (-3 dB)</td>
<td>DC - 10 MHz DC-coupled, 1 MΩ 10 Hz - 10 MHz AC-coupled, 1 MΩ 100 kHz - 10 MHz AC-coupled, 50 Ω ± 3 dB</td>
</tr>
<tr>
<td>Number of channels</td>
<td>2, simultaneously sampled</td>
</tr>
<tr>
<td>Maximum Sample Rate</td>
<td>20 MS/s single shot</td>
</tr>
<tr>
<td>Minimum Sample Rate</td>
<td>1 KS/s single shot for internal clocking</td>
</tr>
<tr>
<td>Full Scale Input ranges</td>
<td>±40 mV, ±50 mV, ±80 mV, ±100 mV, ±200 mV, ±400 mV, ±500 mV, ±600 mV, ±1 V, ±2 V, ±4 V, ±5 V, ±8 V, ±10 V, and ±20 V, software selectable</td>
</tr>
</tbody>
</table>

## Input protection

- 1 MΩ: ±28 V (DC + peak AC for CH A, CH B and EXT only without external attenuation)
- 50 Ω: ±4 V (DC + peak AC for CH A, CH B and EXT only without external attenuation)

## On-Board Acquisition Memory System

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Record Length</td>
<td>Software selectable, specified in number of sample points. Must be a minimum of 256 points and must be a multiple of 16.</td>
</tr>
<tr>
<td>Number of Records</td>
<td>Software selectable from a minimum of 1 to a maximum of infinite number of records</td>
</tr>
<tr>
<td>Pre-trigger depth</td>
<td>Single-channel: 0 to 4080, software selectable with 16 point resolution</td>
</tr>
<tr>
<td>Post-trigger depth</td>
<td>Record Length - Pre-trigger depth</td>
</tr>
</tbody>
</table>

## Timebase System

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timebase options</td>
<td>Internal Clock or External Clock (Optional)</td>
</tr>
<tr>
<td>Internal Sample Rates</td>
<td>20 MS/s, 10 MS/s, 5 MS/s, 2 MS/s, 1 MS/s, 500 KS/s, 200 KS/s, 100 KS/s, 50 KS/s, 20 KS/s, 10 KS/s, 5 KS/s, 2 KS/s, 1 KS/s</td>
</tr>
<tr>
<td>Internal Clock accuracy</td>
<td>±25 ppm</td>
</tr>
</tbody>
</table>

## Dynamic Parameters

Typical values measured using a randomly selected ATS9120 in ±1 V input range, DC coupling and 50 Ω impedance. Input was provided by a HP8656A signal generator, followed by a 9-pole, 1 MHz band-pass filter. Input frequency was set at 1 MHz and amplitude was 650 mV rms (92% of full scale input).

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNR</td>
<td>60 dB</td>
</tr>
<tr>
<td>SINAD</td>
<td>58 dB</td>
</tr>
<tr>
<td>THD</td>
<td>-61 dB</td>
</tr>
<tr>
<td>SFDR</td>
<td>-62 dB</td>
</tr>
</tbody>
</table>

Note that these dynamic parameters may vary from one unit to another, with input frequency and with the full scale input range selected.

## Optional ECLK (External Clock) Input

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Level</td>
<td>±200 mV sine wave or 3.3 V LVTTL</td>
</tr>
<tr>
<td>Input impedance</td>
<td>50 Ω for AC signals 10 kΩ for DC</td>
</tr>
<tr>
<td>Input coupling</td>
<td>AC</td>
</tr>
<tr>
<td>Maximum frequency</td>
<td>20 MHz for Fast External Clock</td>
</tr>
<tr>
<td>Minimum frequency</td>
<td>1 MHz for Fast External Clock</td>
</tr>
<tr>
<td>Sampling Edge</td>
<td>Rising</td>
</tr>
<tr>
<td>Maximum amplitude</td>
<td>2 V p-p</td>
</tr>
</tbody>
</table>

---

**ATS9120**

20 MS/s 12-Bit PCIe Digitizer

Input protection

<table>
<thead>
<tr>
<th>Resistance</th>
<th>Voltage Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 MΩ</td>
<td>±28 V (DC + peak AC for CH A, CH B and EXT only without external attenuation)</td>
</tr>
<tr>
<td>50 Ω</td>
<td>±4 V (DC + peak AC for CH A, CH B and EXT only without external attenuation)</td>
</tr>
</tbody>
</table>

On-Board Acquisition Memory System

- **Record Length**: Software selectable, specified in number of sample points. Must be a minimum of 256 points and must be a multiple of 16.
- **Number of Records**: Software selectable from a minimum of 1 to a maximum of infinite number of records.
- **Pre-trigger depth**: Single-channel: 0 to 4080, software selectable with 16 point resolution.
- **Post-trigger depth**: Record Length - Pre-trigger depth.

Timebase System

- **Timebase options**: Internal Clock or External Clock (Optional).
- **Internal Sample Rates**: 20 MS/s, 10 MS/s, 5 MS/s, 2 MS/s, 1 MS/s, 500 KS/s, 200 KS/s, 100 KS/s, 50 KS/s, 20 KS/s, 10 KS/s, 5 KS/s, 2 KS/s, 1 KS/s.
- **Internal Clock accuracy**: ±25 ppm.

Dynamic Parameters

- **SNR**: 60 dB.
- **SINAD**: 58 dB.
- **THD**: -61 dB.
- **SFDR**: -62 dB.

Note that these dynamic parameters may vary from one unit to another, with input frequency and with the full scale input range selected.

Optional ECLK (External Clock) Input

- **Signal Level**: ±200 mV sine wave or 3.3 V LVTTL.
- **Input impedance**: 50 Ω for AC signals 10 kΩ for DC.
- **Input coupling**: AC.
- **Maximum frequency**: 20 MHz for Fast External Clock.
- **Minimum frequency**: 1 MHz for Fast External Clock.
- **Sampling Edge**: Rising.
- **Maximum amplitude**: 2 V p-p.
ATS9120
20 MS/s 12-Bit PCIe Digitizer

**Optional 10 MHz Reference Input**
- **Signal Level**: ±200 mV sine wave or square wave
- **Input impedance**: 50 Ω
- **Input Coupling**: AC coupled
- **Input Frequency**: 10 MHz ± 0.25 MHz
- **Sampling Clock Freq.**: 20 MHz fixed. Lower sample rates available using decimation

**Triggering System**
- **Mode**: Edge triggering with hysteresis
- **Comparator Type**: Analog comparators
- **Number of Trigger Engines**: 2
- **Trigger Engine Combination**: Engine J, engine K, J OR K, software selectable
- **Trigger Engine Source**: CH A, CH B, EXT, Software or None, independently software selectable for each of the two Trigger Engines
- **Hysteresis**: ±5% of full scale input, typical
- **Trigger sensitivity**: ±10% of full scale input range. This implies that the trigger system may not trigger reliably if the input has an amplitude less than ±10% of full scale input range selected
- **Trigger level accuracy**: ±5%, typical, of full scale input range of the selected trigger source
- **Bandwidth**: 10 MHz
- **Trigger Delay**: Software selectable from 0 to 9,999,999 sampling clock cycles. Has to meet alignment requirements (see ATS-SDK User Manual for more information).
- **Trigger Timeout**: Software selectable with a 10 µs resolution. Maximum settable value is 3,600 seconds. Can also be disabled to wait indefinitely for a trigger event

**TRIG IN (External Trigger) Input**
- **Input impedance**
  - ±2.5 V range: 1 MΩ
  - TTL range: 10 kΩ
- **Bandwidth (-3 dB)**
  - DC-coupled: DC - 10 MHz
  - AC-coupled: 10 Hz - 10 MHz
- **Input range**: ±2.5 V or TTL, software selectable
- **DC accuracy**: ±10% of full scale input
- **Input protection**: ±8 V (DC + peak AC without external attenuation)
- **Coupling**: DC, fixed

**Materials Supplied**
- ATS9120 PCIe Card
- ATS9120 Installation Disk (on USB Flash Drive)

**Certification and Compliances**
- RoHS 2 (Directive 2011/65/EU) Compliance
- CE Marking — EC Conformity
- FCC Part 15 Class A / ICES-003 Class A Compliance

*All specifications are subject to change without notice*

† MATLAB is a trademark and/or registered trademark of The MathWorks, Inc. LabVIEW is a trademark and/or registered trademark of National Instruments. Windows is a trademark and/or registered trademark of Microsoft Corporation in the U.S. and/or other countries. Linux is a registered trademark of Linus Torvalds. CUDA is a trademark and/or registered trademark of NVIDIA Corporation in the U.S. and/or other countries. Radeon is a trademark of Advanced Micro Devices, Inc. OpenCL is a trademark of Apple Inc. All other trademarks are the property of their respective owners.

**ORDERING INFORMATION**
- ATS9120
- ATS9120-001
- ATS9120: External Clock Upgrade
- ATS9120-005
- ATS9120: One Year Extended Warranty
- ATS9120-061
- Software Development Kit
  - (Supports C/C++, Python, MATLAB, and LabVIEW)
  - ATS-SDK
- ATS-GPU-BASE: GPU Streaming Library
  - ATSGPU-001
- ATS-GPU-OCT: Signal Processing Library
  - (requires ATSGPU-001)
  - ATSGPU-101
- ATS-GMA-BASE: GPU Streaming Library
  - ATSGMA-001
- ATS-GMA-OCT: Signal Processing Library
  - (requires ATSGMA-001)
  - ATSGMA-101

Manufactured By:
Alazar Technologies Inc.
6600 TRANS-CANADA HIGHWAY, SUITE 310
POINTE-CLAIRE, QC, CANADA H9R 4S2
TOLL FREE: 1-877-7-ALAZAR
TEL: (514) 426-4899  FAX: (514) 426-2723
E-MAIL: sales@alazar.com
# DATASHEET REVISION HISTORY

<table>
<thead>
<tr>
<th>Changes from version 1.1 (March 2018) to version 1.1a</th>
<th>Section, Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Added trademark and registered trademark information</td>
<td>Global change</td>
</tr>
<tr>
<td>Corrected real-time sampling rate range to <strong>20 MS/s down to 1 KS/s</strong></td>
<td>Acquisition System, pg. 2</td>
</tr>
<tr>
<td>Added section on ATS-GMA</td>
<td>ATS-GMA, pg. 5</td>
</tr>
<tr>
<td>Added missing Full Scale Input range for 1 MΩ input impedance: ±20 V</td>
<td>Acquisition System, pg. 6</td>
</tr>
<tr>
<td>Added ATS-GMA order information</td>
<td>Ordering Information, pg. 7</td>
</tr>
</tbody>
</table>