
w w w . a l a z a r t e c h . c o m Version 3.5 - June 2017

ATS-GPU 
Real Time Signal Processing Software

ATS-GPU Based
User Application

Custom Kernels

AlazarTech Driver NVIDIA Driver

GPUAlazarTech
Digitizer Card

Legend

Control
Data Flow

ATS Api

ATS_GPU.dll

CUDA Runtime

1,000,000
(2048 pt FFTs, see benchmark  
table below for more details)

Windows (7/8/10)  
& Linux

Product GPU  
Compatibility 

Operating  
System

Throughput  
to GPU

†FFT  
Length

†Max. FFTs 
Per Second

CUDA compute 
capability 2.0+

Up to 4 GB/s Up to 
2 M Points

ATS-GPU

Overview
ATS-GPU is a software library developed by AlazarTech to 
allow users to do real-time data transfer from its PCI Express 
waveform digitizers to a CUDA-enabled Graphical Processing 
Unit (GPU) at rates up to 4 GB/s.

Modern GPUs include very powerful processing units and a 
very high speed graphical memory bus.  This combination 
makes them perfectly suited for signal processing applications.

Unfortunately, it is not easy for other hardware devices, such 
as waveform digitizers, to DMA data directly to the GPU’s 
on-board memory.  

This forces users to manually copy data from the buffer 
returned by the waveform digitizer to the GPU.  This copy-
ing process is relatively slow and causes the overall data 
throughput to be drastically reduced.

ATS-GPU solves this problem by transferring data to the 
GPU using highly optimized software routines implemented 
at the kernel level of the operating system and assisted by 
hardware. Rates up to 4 GB/s have been achieved.

The optional OCT Signal Processing module for ATS-GPU 
contains floating point FFT routines that have also been op-
timized to provide the maximum number of FFTs per second.  
Kernel code running on the GPU can do zero-padding, apply 
a windowing function, do a floating point FFT, calculate the 
amplitude and convert the result to a log scale. It is also 
possible to output phase information.

ATS-GPU includes an example program that demonstrates 
how to use the ATS-GPU library to transfer data from a 
waveform digitizer to a GPU. The example also shows how to 
do simple data processing on the GPU using CUDA kernels, 
and how to transfer the processed data back to host memory 
(RAM).  Users can use this example program as a starting 
point to create their own kernels to do GPU-based DSP.

•	 Transfer A/D data to GPU at high speed

•	 	Up to 4 GB/s transfer rate for PCIe Gen 3 
digitizer boards

•	 Supports CUDA compute capability 2.0+

•	 Designed to work with AlazarTech  
PCI Express waveform digitizers

•	 Optional OCT Signal Processing  
Module includes:
◊	 Very High-Speed Floating Point FFT
◊	 Dispersion Compensation and  

Windowing Functions

•	 Compatible with Windows & Linux

GPU-Based Signal Processing
Graphical Processing Units (GPUs) were originally designed for 
rendering high quality video for gaming applications, which 
required being able to perform massive amount of real-time 
calculations.  The highly parallel architecture of modern GPUs 
also makes them an ideal platform for digital signal process-
ing (DSP) and high performance computing (HPC) systems.  

In the past, complex real-time signal processing, such as 
FFT, correlation, FIR filtering etc. could only be achieved 
using dedicated DSP processors or by implementing the 
algorithms inside and FPGA or an ASIC.  All these methods 
are non-trivial, expensive, time consuming and require 
highly specialized engineering skills.

Using GPUs, users can implement any algorithm that can be 
parallelized in a GPU using well known software techniques 
and gain a better than 10-fold improvement over CPU based 
signal processing.  The reason why GPUs perform so well for 
DSP applications is that they contain hundreds of processing 
cores (kernels) running in parallel, while sharing a very high 
speed graphical memory bank.

Benchmarks
An ATS9373 in an X99 Deluxe machine using an Intel i7 
5930K @ 3.5 GHz, 64GB DDR4 and NVIDIA GeForce GTX 
Titan X GPU had the following benchmarks:

FFT Length Single Channel Max. Dual Channel Max.

NPT Trigger  
Repeat Rate 

(sampled @2.4 GS/s)

Continuous 
Sample Rate

NPT Trigger  
Repeat Rate  

(sampled @1.2 GS/s)

Continuous 
Sample Rate

1024 2000 kHz 2 GS/s 1000 kHz 1 GS/s

1536* 1200 kHz -- 550 kHz --

2048 1000 kHz 2 GS/s 500 kHz 1 GS/s

4096 525 kHz 2 GS/s 275 kHz 1 GS/s

6144* 300 kHz -- 130 kHz --

8192 275 kHz 2 GS/s 125 kHz 1 GS/s

16384 125 kHz 2 GS/s 55 kHz 1 GS/s

32768 65 kHz 2 GS/s 28 kHz 1 GS/s

1048576 1.7 kHz 1.8 GS/s 0.85 kHz 0.8 GS/s

* Zero-padded to the next power of 2 † Available only with optional OCT Signal Processing Module



w w w . a l a z a r t e c h . c o mVersion 3.5 - June 2017

ATS-GPU 
Real Time Signal Processing Software

benchmark performance.

On an Asus X99 Deluxe motherboard that uses an Intel i7 5930K 
3.5 GHz CPU and DDR4 memory (64 GB RAM), a combination 
of the ATS9373 and NVIDIA GeForce GTX Titan X (Maxwell) 
GPU was able to do a 2048 point FFT at a rate of 1000 kHz. 

An older P9X79 machine with an Intel Xeon E5-2603 v2 CPU 
and 16 GB DDR3 1333 MHz memory performed approximately 
35% slower.

Complexity of the kernel code running on the GPU can 
have a significant impact on the overall performance. Users 
should optimize their code to take advantage of the GPU’s 
high speed memory. 

Computer Power Supply
GPUs are power hungry.  Even consumer-grade models such 
as Asus GTX980 require a power supply that can provide at 
least 500 Watts of power.  As such, users must make sure 
their computer’s power supply has sufficient capacity.   

Compatible GPUs
ATS-GPU is been designed to be compatible with all compute 
capability 2.0 or higher CUDA-enabled GPUs. NVIDIA has 
deprecated compute capability 2.0 and 2.1 but they are still 
supported. Testing was done using: 

•	 Asus GTX980 
•	 NVIDIA GeForce GTX Titan X 
•	 NVIDIA Quadro P5000
•	 NVIDIA Tesla P100
•	 NVIDIA Quadro 600
•	 NVIDIA GTX670

It should be noted that ATS-GPU supports only one GPU at a 
time.  If you have multiple GPUs installed in your computer, 
ATS-GPU will let you select one of them for use.

Deprecation of OpenCL-Based ATS-GPU
Due to lack of demand, ATS-GPU v.2.x was the last version 
to support OpenCL. ATS-GPU v3.5 programming manual 
includes instructions on how you can modify your existing 
programs to use the CUDA-based ATS-GPU. 

Data Throughput to GPU
The data transfer rate to GPU is dependent on the generation 
of PCI Express digitizer board used:

Generation Transfer Rate

Gen 3: ATS9373 Up to 4 GB/s

Gen 2: ATS9360, ATS9416 Up to 3.0 GB/s

Gen 1: ATS9870, ATS9350, ATS9351, ATS9625, 
ATS9626, ATS9440, ATS9462*

Up to 1.6 GB/s 
*(720 MB/s on 
ATS9462)

Compatible Waveform Digitizers
All AlazarTech PCI Express waveform digitizers are compat-
ible with ATS-GPU. Only single-board configurations are 
supported at this time.

AlazarTech’s PCI bus waveform digitizers are not supported, 
as the host CPU is more than capable of handling data rates  
generated by PCI bus boards.

ATS-GPU cannot directly be interfaced with non-AlazarTech 
waveform digitizers.  However, users can always capture 
data from non-AlazarTech digitizers and pass it to the GPU 
using the software validation data path.  

Tests using the same X99 Deluxe system produced compa-
rable results with both the NVIDIA Quadro P5000 GPU and 
Asus GTX980 GPU.

A Typical ATS-GPU Application
A typical user application that uses ATS-GPU consists of the 
following minimum sections:

1)	 User application sets up waveform digitizer hardware 
(sample rate, input range, trigger parameters etc.).

2)	 User application allocates buffers and sets up the GPU.

3)	 User application starts data capture.
ATS-GPU starts streaming data to GPU, one buffer at 
a time.

4)	 GPU kernels do the following:
•	 Process a buffer;
•	 Copy result buffer to user memory;
•	 Get next buffer, and repeat.

5)	 User application running on CPU consumes result buffer.
For highest performance, make sure data consumption 
is faster than the rate at which result buffers are sup-
plied by GPU kernels.  

6)	 This continues until the application has to be closed.

ATS-GPU and CUDA Runtime Library
ATS-GPU is shipped with a specific version of CUDA runtime 
library and links statically to it.

Programmers are allowed to use a different version of CUDA 
runtime library for their custom kernel code.  NVIDIA guar-
antees that the two versions of CUDA runtime libraries will 
be interoperable.

Note: ATS-GPU only supports Windows versions and Linux 
distributions that are supported by NVIDIA’s CUDA Toolkit. 
32-bit operating system support is also similarly limited by 
NVIDIA.  In particular, ATS-GPU optional OCT Signal Process-
ing library cannot be built as a 32-bit library. We currently 
use CUDA toolkit 8.0, older versions are untested.

ATS-GPU Data Flow

ATS-GPU Data Flow

GPU
Memory

Host
Computer

RAM

Custom
GPU

Kernels

ADC Data

from ATS 
Digitizer

ATS-GPU

managed
transfer

ATS-GPU is supplied with an example user application in source 
code. The application includes GPU kernels that use ATS-GPU 
to receive data, do very simple signal processing (data inver-
sion), and copy the processed (inverted) data back to a user 
buffer. All this is done at the highest possible data transfer rate.

Programmers can replace the data inversion code with 
application-specific signal processing kernels to develop 
custom applications.

Performance Dependencies
Since the host CPU is involved in moving data to and from 
the GPU and in scheduling GPU kernels, CPU speed and 
motherboard’s memory bandwidth can have a significant 
impact on the overall performance.

The optional OCT Signal Processing module was used to 



w w w . a l a z a r t e c h . c o m Version 3.5 - June 2017

ATS-GPU 
Real Time Signal Processing Software

Note that this will probably not provide optimal throughput. 
Also note that AlazarTech will not support this type of soft-
ware development.

Software Licensing Policy
Users are allowed to freely distribute the ATS-GPU library 
as long as there is an AlazarTech PCI Express waveform 
digitizer present in the same computer. If an AlazarTech PCI 
Express waveform digitizer is not present in the computer, 
users must purchase a separate license for each computer 
on which ATS-GPU is installed.

In no case is the user allowed to distribute or share the 
source code of ATS-GPU with other users.

Annual Subscriptions
The purchase of an ATS-GPU subscription provides customers 
with the following for a period of 1 year on ATS-GPU: 
•	 Download ATS-GPU updates from the AlazarTech web site;
•	 Receive new example programs as they become available;
•	 Receive technical support on ATS-GPU.
Additional add-on modules for ATS-GPU, such as the OCT 
Signal Processing Module are not covered by the annual 
subscription, i.e. holders of an annual subscription will have 
to purchase subscriptions for additional modules separately.

The purchase of an ATS-GPU OCT Signal Processing Module 
subscription provides customers with the following for a pe-
riod of 1 year on the ATS-GPU OCT Signal Processing Module: 
•	 Download OCT Signal Processing Module updates from 

the AlazarTech web site;
•	 Receive enhanced/improved OCT Signal Processing 

functionality as they become available;
•	 Receive technical support on the OCT Signal Process-

ing Module.
Note that support is provided for product bugs, and not for 
writing custom GPU kernels or for learning GPU programming.

Writing Custom GPU Kernels
ATS-GPU includes an example program in C/C++ source 
code, which implements very simple GPU kernels that invert 
data and write it back to a buffer in computer memory.

Users who need to write their own kernels should start with 
the included source code, add CUDA code in the appropriate 
place, and compile their libraries.

The example program is provided with a Visual Studio project 
and a CMake build file. We use more recent C++ features, and 
Visual Studio 2015 and later is required. On Linux, a C++11 
compiler is required and can be accessed on older distributions 
via a devtoolset (RHEL and CentOS 6 for example).

Writing, testing, and debugging modified kernels will be 
the sole responsibility of the user and AlazarTech will not 
be responsible for assisting the user with such custom 
modifications.

Users must have expert programming knowledge of CUDA 
development in order to customize ATS-GPU kernels.

Manufactured By:
Alazar Technologies, Inc.

6600 TRANS-CANADA HIGHWAY, SUITE 310
POINTE-CLAIRE, QC, CANADA  H9R 4S2

TOLL FREE: 1-877-7-ALAZAR OR 1-877-725-2927
TEL: (514) 426-4899  FAX: (514) 426-2723

E-MAIL: info@alazartech.com

ATS-GPU:	1 Year Subscription	 ATSGPU-001

ATS-GPU:	OCT Signal Processing Module	 ATSGPU-101 
	 1 Year Subscription	

ATS-GPU:	OCT Signal Processing Module	 ATSGPU-104 
	 Source Code

ORDERING INFORMATION

ATS-GPU main API functions
ATS_GPU_SetCUDAComputeDevice
ATS_GPU_Setup
ATS_GPU_AllocBuffer
ATS_GPU_PostBuffer
ATS_GPU_StartCapture
ATS_GPU_GetBuffer
ATS_GPU_AbortCapture
ATS_GPU_FreeBuffer



w w w . a l a z a r t e c h . c o mVersion 3.5 - June 2017

ATS-GPU 
Real Time Signal Processing Software

Optional OCT Signal Processing module
Customers can purchase an optional OCT Signal Processing 
module that provides very high speed floating point FFT 
capability for data acquired by AlazarTech’s PCI Express 
waveform digitizers or for user-supplied data.

Users can use example programs in C/C++, Python, 
LabVIEW, or MATLAB to set-up the waveform digitizer 
parameters, set-up FFT parameters in the GPU, do the 
acquisition, and receive the FFT result buffer.

C/C++ example programs are provided with Visual Studio 
projects and CMake build files. Python code is tested under 
Python 2.7 and 3.6.  LabVIEW 2009 or newer is necessary 
to use LabVIEW example codes. MATLAB code is developed 
under MATLAB 2015A, but is expected to work with most 
MATLAB versions.

Waveform digitizer data is transferred to the GPU in 
a buffer that will contain many records. This number, 
RecordsPerBuffer, is specified by the user.  Users should 
make sure that they choose this number such that the 
buffer size is in the order of 1 MByte or larger. Smaller 
buffers can reduce overall data throughput.

For software validation purposes, ATS-GPU OCT Sig-
nal Processing module allows the GPU  to operate on 
user-supplied data. It should be noted that the overall 
throughput may be significantly reduced.

If the number of samples per record is not a power-of-2, 
ATS-GPU FFT will perform zero-padding to the next power 
of 2.  It will then apply a complex windowing function, do a 
single-precision floating point FFT, calculate the amplitude 
and phase, and convert the amplitude to logarithmic values.  

Very Long FFTs 
For some applications, it is necessary to perform very 
long FFTs (e.g. one million points).

Even if a waveform digitizer has an on-board FPGA, such 
very long FFTs do not fit inside an FPGA due to resource 
limitations of the FPGA.

With the optional OCT Signal Processing module, ATS-
GPU is fully capable of calculating such very long FFTs.  
Our benchmarks using Intel i7 5930K CPU and NVIDIA 
GeForce GTX Titan X GPU have shown that ATS-GPU is 
capable of doing 1800 one million point FFTs per second 
in single channel mode (keep up with sample rate of up 

to 1800 MS/s). Even longer FFTs are possible.  We have 
not tested the limits of FFT length with ATS-GPU.

Using ATS-GPU on File Based Data
In many circumstances, users have previously captured 
raw data on file that they would like to process using a GPU.

ATS-GPU provides example programs in C/C++, Python, 
MATLAB, and LabVIEW that show how to read data from 
file, format it according to the GPU’s requirements, and 
transfer it to a GPU for FFT processing. This is done using 
the software validation datapath. 

Zero Padding
If the number of samples per record (A-scan) is not a 
power of 2, the OCT Signal Processing Module will per-
form zero-padding to the closest power of 2 before doing 
further signal processing.

Dispersion Compensation Function
Dispersion compensation is an essential part of any OCT 
signal processing system.  ATS-GPU Optional OCT Signal 
Processing Module allows users to multiply the zero-pad-
ded data with a user-specified Dispersion Compensation 
Function (DCF).  The DCF is a complex function.

Windowing Function
The windowing function in the Optional OCT Signal 
Processing Module is used to ensure that there are no 
discontinuities in the FFT.  Note that the length of the 
window function should be the same as the length of the 
A-Scan, e.g. if the A-scan is 1536 points long, the window 
function should also be 1536 points long, even though 
the FFT length will be 2048.

Amplitude and Phase Output
The FFT algorithm implemented in OCT Signal Processing 
Module is capable of calculating both amplitude and phase 
outputs.  All outputs are provided as single-precision 
floating point data (32 bits per data point).

Source Code License
For users who want to customize the OCT Signal Pro-
cessing Module for their own use, a source code license 
is available.  A Non-Disclosure Agreement must be ex-
ecuted before source code can be released.  Note that 
the source code (including GPU kernels) are provided on 
an as-is basis and are meant to be used by expert level 
GPU programmers. In other words, AlazarTech will not be 
responsible for explaining to the user what the code does.

OCT Signal Processing Block Diagram
*Data can come from multiple channels

Window Function
(Hanning, Hamming, Custom...)

Real Function

+
Dispersion Compensation

Function
(User defined function)

Complex Function

Zero
Padding

ADC Data*
from ATS Digitizer

FFT

Amplitude
Calculation

Log

Phase
Calculation

Real

Imaginary

Result
to User Bu�er


